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A mathematical model of thermal processes in the motion of one body over the 
melting surface of another is considered. A simple analytical solution to the 
problem, applicable in a wide range of velocities, is obtained. 

In a number of fields of modern technology, in which the trend toward intensification 
of processes is increasing, problems associated with the study of friction between different 
pairs of materials at a high sliding velocity are becoming ever more urgent [i]. The melt- 
ing of one part of a contacting pair results in a lubrication effect, reducing the frictional 
force. A similar picture is observed in the motion of a skate over ice. In [2, 3], problems 
of this kind are studied from the standpoint of the hydrodynamic theory of lubrication devel- 
oped by Reynolds [4]. That theory, in particular, enables one to calculate the pressure of 
a liquid between two surfaces moving relative to each other at a high velocity and between 
which there is a certain angle (the bearing ability of a wedge). In melting as a result of 
friction, the liquid layer also has a wedge shape. But this is not a wedge into which liquid 
is injected, and for a given relative velocity of the surfaces it has the opposite direction 
to that which occurs in bearings, and its nature is completely different. Here the flow 
rate of liquid varies along the film rather than its pressure, so the Reynolds theory is 
not applicable in this case. In [3] the problem was considered under the condition that the 
film thickness is constant along the contact surface, so that there is no wedge. But the 
assumption that the surfaces between which the melting process occurs are parallel is a 
strong simplification of the problem. 

In the present paper we suggest a solution to the problem using a model that is not based 
on the hydrodynamic theory of lubrication. Pressure may not play an important role in the 
liquid layer; the liquid film is formed and maintained by the heat flux from the film itself 
and by the heat produced in the process of viscous dissipation of energy. 

Over the surface of the stationary body (the counterbody), which is assumed to have a 
relatively low melting temperature, a rigid body (the slider) moves with acceleration. The 
temperature of both bodies before the onset of motion was equal to the ambient temperature 
To. Dry friction and intense heat release at the contact surface occur in the initial period 
of motion. A melt film then develops on the trailing part of the contact surface. At a 
sufficiently high velocity, at a time t from the onset of motion, the liquid film covers the 
ent___ire contact surface. By this time, the slider has become heated to a thickness [i] 6 = 
/at, and the heat flux in its direction will be negligible compared with the flux toward the 
melting counterbody. 

The heat-conduction equation for the moving medium has the form [5] 

\ 

0 v. grad) ( p e T )  = div ~, grad T q- q-), ( 1 ) 

where ~ is the dissipation function. 

The arrangement of the coordinate axes is shown in Fig. i. The body moves from left to 
right with a velocity U. In the coordinate system rigidly associated with the body, the 
velocity within the liquid film at the boundary with the body is v x = 0, and at the melting 
boundary at the counterbody it is v x = U. The contact width (along the z axis) is assumed 
to be fairly large, and boundary effects (along the width) are ignored. We consider the quasi- 
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Fig. i. Diagram of the relative motion of the bodies 
and arrangement of the coordinate axes: i) moving 
body; 2) counterbody; 3) liquid layer. 

steady case (8/8t = 0), the liquid is incompressible, and we ignore the temperature dependence 
of the thermophysical properties of the material. We then write Eq. (i) in the boundary-layer 
approximation 

OT OaT ~ ( Ov~ ~ 2. 
pcv~ - ~, + (2) 

Ox Oy a \ Oy / 

For a small film thickness, a high sliding velocity, and the absence of pronounced pres- 
sure gradients, it is natural to assume the velocity profile within the film to be linear, 

v~=U y , O~y~h(x),. O < x ~ I ,  
h 

and Eq. (2) then takes the form 

(3) 

_ _  U a pcU tj OT _ ~  OaT - J c ~ - -  (4) 
Ox Oy ~ h 2 

We write the boundary conditions 

OTov v=o=0;  TIy=h=Tm . (5) 

The first condition formulates the assumption that in the quasi-steady state, the heat 
flux through the contact surface toward the body is negligible. The second condition states 
that within the counterbody, the temperature of the melt at the liquid--solid interface equals 
the melting temperature T m. 

If the velocity U of relative motion is not too high (the appropriate criterion will be 
discussed below), the term of the equation that describes heat transfer will be small and 
can be omitted. A solution of the simpler equation 

U a ~, OZT +~-  = 0  (6) 
Oy 2 yZ 

with the boundary conditions (5) is the expression 

where 

T(x, y ) = T  m + T * [ 1  

is a quantity that does not depend on x. 

~ ] (7) 
h2 (x) ' 

T * - -  I~U2 ( 8 )  
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If the convective term cannot be neglected, then its influence, as seen from the left 
side of Eq. (4), is manifested predominantly in the vicinity of y = h. We shall assume 

that convective heat transfer into adjacent hotter layers does not alter the quadratic 
character of the y dependence of the temperature. Only the thickness h(x) of the liquid 
film varies; it can be calculated by methods of boundary-layer theory. The application of 
these methods to our melting problem is even better justified than in ordinary hydrodynamics, 
since the melting boundaries are physically defined, in contrast, for example, to a viscous 
boundary layer, the boundary of which is very arbitrary. 

We calculate the derivative 

OT _2T* yz dh 
Ox h '~ dx 

and substitute it into the left side of Eq. (4): 

y~ Ad OZT W 2 
9cUT*2 - - - =  ~, + ~ -  

h~ dx Oy 2 h~ 

We integrate both sides of the latter equation over y from 0 to h, with allowance for the 
boundary conditions (5): 

g 2 1 e h  _~ or +~ (9) 
pcUT* ~ ~x ay Iv=h h 

The heat flux across the liquid layer causes heating and melting of the counterbody, as 
a result of which the liquid layer widens: 

I dh 
_;~ aT = Up [r -I- c (T m --- To)] d--~- 

Oy ,y=~ 

S u b s t i t u t i n g  t h e  l a t t e r  e q u a t i o n  i n t o  (9) and g r o u p i n g  t e r m s ,  we have 

(10) 

dh pcT*U + pUt + pUc (Tm - To) = ~ - - ~  
dx 

(11) 

o r  

o r  

Taking hlx=o=h~__O 

dh z 
-- 2vU/[r + c (Tin - -  To -b T* /2)I. 

dx 
and i n t e g r a t i n g ,  we o b t a i n  

2vUx ] z/2 
h =  r + c ( T m  - - T o + T * / 2 ) :  

(12) 

(13) 

2~U/c ) ,/2 
h= r/c + Tm --To+~U2/4L x (14) 

If the thickness of the liquid film between the surfaces is known, it is easy to calculate 
the frictional force. The drag force acting on an elementary area is 

U 
dF = rx dxdz. 

h (x) 

The total frictional force acting on the surface of a rectangular body with a size s • b 
is 

bj 
F = ! dz o h(x)~U dx = (2UlbZO~)w = [r + c(T m -- To + ~U214L)I 1/2. (15) 
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Let us estimate the range of relative velocities in which Eqs. (14) and (15) can be 

valid. 

The thickness of the liquid film decreases with decreasing velocity. But here there 
is a limit beyond which the hydrodynamic description itself loses meaning. In the small 
vicinity of the point x = 0, where the leading end of the moving body lies, the minimum 

thickness of the liquid film is h 0. Here the initial equation (2) no longer provides an 
adequate description, so the subsequent equations have an estimative nature. Let us turn 
first to Eqs. (9) and (I0). In the region of interest to us, we have Ax = Ah = h0, from 
which we have 

U 2 
- -  = u p  [r + c ( ~  - -  To)].  ( 1 6 )  
ho 

If we consider that in this region, the dissipation function @ should be represented by 
a number of other terms in addition to the second term on the right side of Eq. (2), 

r(ao /G ] r  av J + 2  . .  , Oy Ox 

then the left side of Eq. (16), which determines the "input" side of the energy balance in 
the vicinity of the point x = 0, will be four times larger, and for the corresponding limit- 
ing velocity we have the equation 

h0 U~ = -$~-[r + c(Tm --To)]. ( i7) 

The limiting velocity is related to the limiting thickness h 0 of the liquid film at the 
front end of the sliding body, which cannot, in any case, be less than the molecular size, 
1 ~, for example. There is some arbitrariness in the choice of the parameter h0, but we 
can expect that its numerical value will not depend on the materials of the contacting pair 
or on the shape and size of the roughness elements of the moving body near its end. 

With increasing velocity, the thickness of the liquid film increases, but only to a 
certain limit, as seen from Eq. (14), after which it may decrease again. The limit is reached 
at velocities for which the contribution of convection to the energy balance equals the con- 
tribution of heat conduction: 

U,= 2 ( r/c+ Tm --To ) 1/2 
- ~ i ~ ,  , ( 1 8 )  

But if the contribution of the convective term in Eq. (4) is large, the initial assump- 
tion of a quadratic temperature profile obviously becomes false, so that we must have U < U 2. 

Let us give some numerical results. 

In the motion of a body over an ice surface, if T m -- T O = 0 and h 0 = 4 ~, estimates 
give U I = 19 m/sec and U 2 = 312 m/sec. At a velocity U = 200 m/sec and for s = b = 0.i m, 
the temperature of the body at the contact surface will exceed the melting temperature of 
ice by T* = 65 K, the maximum thickness of the liquid film will be h = 12.3-10 -6 m, and the 
frictional force will be F = 580 N. 

If the body moves over a tin surface, then for T m -- T~ = 232 K and hQ = 4 ~ we will 
have U I = 43 m/sec and U 2 = 5.5.10 -3 m/sec. Let the velocity be U = 200 m/sec and ~ = b = 
0.i m. We then have T* = i.i K, h = 9.6-i0 -G m, and F = 800 N. 

In conclusion, let us formulate our results. We obtained a simple analytical solution 
to the problem of the sliding of a body at a high velocity over a melting surface which is 
applicable in a wide velocity range. The thickness of the liquid film as a function of 
the coordinate and velocity was determined. The intensity of heat release in the film and 
its thickness depend on the distance to the front end of the moving body, but the temper- 
ature over the entire contact surface is constant and exceeds the melting temperature by 
an amount proportional to the square of the relative velocity. 
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NOTATION 

t, time; T, temperature; To, ambient temperature; Tm, melting temperature; v, velocity 
of a point in the liquid medium; U, relative velocity of the bodies; p, liquid density, kg/m~; 
c, specific heat of the liquid, J/(m3-K); ~, thermal conductivity coefficient of the liquid, 
W/(m'K); ~, dynamic viscosity, kg/(m.sec); v = ~/p, kinematic viscosity, m2/sec; r, specific 
heat of melting, J/kg; h, thickness of the liquid film; ~, thermal diffusivity coefficient 
of the material of the moving body; s length of the sliding body; b, width of the body. 

i. 

2. 
3. 
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TESTING TWO-TEMPERATURE THERMAL-CONDUCTION THEORY FOR 

CARBON ROD COMPOSITES 

N. A. Vasil'eva, I. V. Goncharov, 
V. L. Mikov, and V. V. Sazonov 

UDC 536.2.01 

Measurements have been used to test software for calculating the temperature 
pattern in a reinforced medium in the two-temperature approximation and for 
determining model parameters. 

Rod composites are widely used, which requires models that adequately reflect heat trans- 
fer there; the usual approach is based on homogenizing the composite via effective thermo- 
physical characteristics [i]. The errors are very much dependent on obedience to the condi- 
tions for equivalence between a homogeneous medium and the initial heterogeneous one [2], 
which complicates determining the effective thermophysical parameters. The effectivethermal 
conductivity of a heterogeneous material in general is dependent on time [3]. 

An alternative description is the two-temperature conduction model, which avoids those 
difficulties. A representative elementary volume is distinguished, which contains one re- 
inforcing rod in the matrix, and for which one writes averaged conduction equations for each 
component together with Henry's equation, which relates the heat fluxes between the components 
qij to the mean temperatures: 

The correctness of the model has been discussed [4, 5]; it has been used in model treat- 
ments [6, 7]. However, its use is hindered by the lack of data on the thermophysical char- 
acteristics of the components and also ~c. 

Here we present a model for that approach and measurements on the thermal conductivities 
of carbon rods and matrix; temperature patterns as calculated from the approach are compared 
with experiment. 

Model. We consider a material in which the rods can be divided into two groups: ones 
Ln the x-y planes parallel to the surface (denoted by ix-y) and ones parallel to the z 
axis, fz; the spaces between the rods are filled with matrix m. ~ Partial homogenization is 
performed [8] for the fx-y rods and m, and we convert from the multicomponent medium to a 
two-component one. 
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